Abstract

A hybrid analytical-collocation approach for fast simulation of the impedance response for a Li-ion battery using the pseudo-two dimensional model is presented. The impedance response of the spherical diffusion equations is solved analytically and collocation is performed on the resulting boundary value problem across the electrode and separator thickness using an orthogonal collocation scheme based on Gauss-Legendre points. The profiles for a frequency range from 0.5 mHz to 10 kHz are compared with the numerical solution obtained by solving the original model in COMSOL Multiphysics. The internal variable profiles across a wide range of frequencies are compared between the two methods and the accuracy, robustness, and computational superiority of the proposed hybrid analytical-collocation approach is presented. The limitations of the proposed approach are also discussed. A freeware for academic use that reads the various battery parameters and frequencies of interest as input, and predicts the battery impedance for a half cell and full cell, is also developed and a means to access it is reported in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call