Abstract

To evaluate the electronic nose (EN) as method for the identification of ten clinically important micro-organisms. A commercial EN system with a series of ten metal oxide sensors was used to characterize the headspace of the cultured organisms. The measurement procedure was optimized to obtain reproducible results. Artificial neural networks (ANNs) and a k-nearest neighbour (k-NN) algorithm in combination with a feature selection technique were used as pattern recognition tools. Hundred percent correct identification can be achieved by EN technology, provided that sufficient attention is paid to data handling. Even for a set containing a number of closely related species in addition to four unrelated organisms, an EN is capable of 100% correct identification. The time between isolation and identification of the sample can be dramatically reduced to 17 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.