Abstract

Fast radiative transfer models (RTMs) are required to process a great amount of satellite-based atmospheric composition data. Specifically designed acceleration techniques can be incorporated in RTMs to simulate the reflected radiances with a fine spectral resolution, avoiding time-consuming computations on a fine resolution grid. In particular, in the cluster low-streams regression (CLSR) method, the computations on a fine resolution grid are performed by using the fast two-stream RTM, and then the spectra are corrected by using regression models between the two-stream and multi-stream RTMs. The performance enhancement due to such a scheme can be of about two orders of magnitude. In this paper, we consider a modification of the CLSR method (which is referred to as the double CLSR method), in which the single-scattering approximation is used for the computations on a fine resolution grid, while the two-stream spectra are computed by using the regression model between the two-stream RTM and the single-scattering approximation. Once the two-stream spectra are known, the CLSR method is applied the second time to restore the multi-stream spectra. Through a numerical analysis, it is shown that the double CLSR method yields an acceleration factor of about three orders of magnitude as compared to the reference multi-stream fine-resolution computations. The error of such an approach is below 0.05%. In addition, it is analysed how the CLSR method can be adopted for efficient computations for atmospheric scenarios containing aerosols. In particular, it is discussed how the precomputed data for clear sky conditions can be reused for computing the aerosol spectra in the framework of the CLSR method. The simulations are performed for the Hartley–Huggins, O2 A-, water vapour and CO2 weak absorption bands and five aerosol models from the optical properties of aerosols and clouds (OPAC) database.

Highlights

  • The operational processing of remote sensing data requires fast radiative transfer models (RTMs), which simulate the radiance field scattered in the atmosphere

  • We have proposed two modifications to the cluster lowstreams regression (CLSR) method for fast computations of radiance spectra in absorption bands

  • Method is used twice, the first time for assessing the spectra corresponding to the TS RTM, and the second time for computing the spectra corresponding to the MS RTM

Read more

Summary

Introduction

The operational processing of remote sensing data requires fast radiative transfer models (RTMs), which simulate the radiance field scattered in the atmosphere. The state-of-the-art acceleration techniques are based on predicting the spectrum by using a fast two-stream RTM (instead of relatively more time consuming multi-stream RTMs) and refining the result by introducing a correction function. The latter can be estimated in the original basis of optical parameters, as in the low-stream interpolation (LSI) method [5], or in the reduced basis, as in some principal component analysis (PCA)-based RTMs [6,7,8,9,10,11,12,13].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call