Abstract
This paper presents a real-time Human detection algorithm based on HOG (Histograms of Oriented Gradients) features and SVM (Support Vector Machine) architecture. Motion detection is used to extract moving regions, which can be scanned by sliding windows; detecting moving region can subtract unnecessary sliding windows of static background regions under the surveillance conditions, then detection efficiency can be improved. Every sliding window is regarded as an individual image region and HOG features are calculated as classified eigenvectors. At last, the detected video objects can be categorized into pre-defined groups of humans and other objects by using SVM classifier. Experimental results from real-time video are provided which demonstrate the effectiveness of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.