Abstract

We demonstrate fast high-precision non-contact distance measurements to technical surfaces using a pair of dual-color electro-optic frequency combs for synthetic-wavelength interferometry (SWI). The dual-color combs are generated from continuous-wave (cw) lasers at 1300 nm and 1550 nm, which are jointly fed to a pair of high-speed dual-drive Mach-Zehnder modulators. The dual-color approach is used for continuous and dead-zone-free compensation of temperature-induced fiber drift. We achieve standard deviations below 2µm at an acquisition time of 9.1 µs for measurements through 7 m of single-mode fiber. Despite the technical simplicity of our scheme, our concept can well compete with other comb-based distance metrology approaches, and it can maintain its accuracy even under industrial operating conditions. The viability of the concept is demonstrated by attaching the fiber-coupled sensor head to an industrial coordinate measuring machine for acquisition of surface profiles of various technical samples. Exploiting real-time signal processing along with continuous fiber drift compensation, we demonstrate the acquisition of point clouds of up to 5 million data points during continuous movement of the sensor head.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.