Abstract

Peak capacity production (i.e., peak capacity per separation run time) is substantially improved for gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and applied to the fast separation of complex samples. The increase in peak capacity production is achieved by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the injection pulse width. Modeling to estimate the on-column band broadening from experimental parameters provided insight for the potential of achieving GC separations in the absence of off-column band broadening, i.e., the additional band broadening not due to the on-column separation process. To optimize GC-TOFMS separations collected with a commercial instrumental platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a commercially available thermal modulator is adapted and applied (referred to herein as thermal injection) to provide a narrow injection pulse, while the TOFMS provided a data collection rate of 500 Hz, initially averaged to 100 Hz for data storage. The use of long, relatively narrow open tubular capillary columns and a 30 °C/min programming rate were explored for GC-TOFMS, specifically a 20 m, 100 μm inner diameter (i.d.) capillary column with a 0.4 μm film thickness to benefit column capacity, operated slightly below the optimal average linear gas velocity (at ~2 mL/min, due to the flow rate constraint of the TOFMS). Standard autoinjection with a 1:100 split resulted in an average peak width of ~1.2 s, hence a peak capacity production of 50 peaks/min. Metabolites in the headspace of urine were sampled by solid-phase microextraction (SPME), followed by thermal injection and a ~7 min GC separation (with a ~6 min separation time window), producing ~660 ms peak widths on average, resulting in a total peak capacity of ~550 peaks (at unit resolution) and a peak capacity production of ~90 peaks/min (~2-fold improvement relative to standard autoinjection with the 1:100 split). This total peak capacity production achieved is equivalent to, or greater than, that currently utilized in metabolomics studies using GC/MS, but with much slower separations, on the order of 40 to 60 min, corresponding to a 5-fold or greater GC/MS analysis throughput rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.