Abstract

Three key metrics for readout systems in quantum processors are measurement speed, fidelity, and footprint. Fast high-fidelity readout enables midcircuit measurements, a necessary feature for many dynamic algorithms and quantum error correction, while a small footprint facilitates the design of scalable, highly connected architectures with the associated increase in computing performance. Here, we present two complementary demonstrations of fast high-fidelity single-shot readout of spins in silicon quantum dots using a compact, dispersive charge sensor: a radio-frequency single-electron box. The sensor, despite requiring fewer electrodes than conventional detectors, performs at the state of the art achieving spin readout fidelity of 99.2% in less than 6 μs fitted from a physical model. We demonstrate that low-loss high-impedance resonators, highly coupled to the sensing dot, in conjunction with Josephson parametric amplification are instrumental in achieving optimal performance. We quantify the benefit of Pauli spin blockade over spin-dependent tunneling to a reservoir, as the spin-to-charge conversion mechanism in these readout schemes. Our results place dispersive charge sensing at the forefront of readout methodologies for scalable semiconductor spin-based quantum processors.19 MoreReceived 7 May 2022Revised 4 December 2022Accepted 5 January 2023DOI:https://doi.org/10.1103/PhysRevX.13.011023Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum engineeringQuantum sensingRadio frequency techniquesPhysical SystemsNanotechnologyQuantum dotsCondensed Matter, Materials & Applied PhysicsQuantum Information

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.