Abstract
Due to the toxicity and instability issues of lead halide perovskites, lead-free perovskites have recently emerged as a viable alternative. However, significant optical band gaps of lead-free perovskites exert influence on their luminescent properties. Fortunately, the addition of dopants becomes an efficacious solution. The current widely utilized methods for synthesizing perovskites almost require high temperatures, a long period, and atmosphere protection, which cost more energy and resources. In this paper, we report that Rb2ZrCl6:xSb3+ perovskite phosphors can be easily prepared by a wet grinding approach at room temperature, which is a more efficient and facile process. Due to the self-trapped excitons of the host structure and Sb3+ ions, the produced samples display blue-white and orange fluorescence under UV lamp irradiation at 254 and 365 nm, respectively. In the photoluminescence spectrum, the doped perovskite exhibits an emission peak at 630 nm under excitation at 365 nm. Importantly, the prepared phosphors have tunable emissions related to the excitation wavelength. In addition, our produced powders show remarkable stability at room temperature, laying the foundations for this approach to be widely used in perovskite production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.