Abstract

3G Wideband CDMA systems adopt the Orthogonal Variable Spreading Factor code tree as the channelization codes management for achieving high data rate transmission in personal multimedia communications. It assigns a single channelization code for each accepted connection. Nevertheless, it wastes the system capacity when the required rate is not powers of two of the basic rate. One good solution is to assign multiple codes for each accepted connection but it causes two inevitable drawbacks: long handoff delay and new call setup delay due to high complexity of processing with multiple channelization codes, and high cost of using more number of rake combiners. Especially, long handoff delay may result in more call dropping probability and higher Grade of Service, which will degrade significantly the utilization and revenue of the 3G cellular systems. Therefore, we propose herein an adaptive efficient codes determination algorithm based on the Markov Decision Process analysis approach to reduce the waste rate and reassignments significantly while providing fast handoff. Numerical results demonstrate that the proposed approach yields several advantages, including the lowest GOS, the least waste rate, and the least number of reassignments. Meanwhile, the optimal number of rake combiners is also analyzed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call