Abstract

Cyanobacterial biomass and cellulose-based materials have been used separately as green bio-adsorbents for the removal of toxic metals from water. Hybrid materials made of living microbial cells encased in a solid matrix have shown good potential for bioremediation. Here, the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 was embedded in situ into bacterial cellulose (BC), a robust biopolymer rich in hydroxyl groups with excellent water holding capacity. The living material was obtained by injecting S. elongatus into a Komagataeibacter sucrofermentans culture producing BC. Several types of BC/S. elongatus (BC/SE) materials were developed including small spheroids and flat films with different cyanobacteria loads via simple adjustments of the biosynthesis process parameters. BC/SE spheroids were evaluated for toxic copper removal and exhibited excellent adsorption properties compared to pure BC with a maximum capacity of 156.25 mg g−1. Thus, this simple bio-embedding approach holds promises in the development of living materials for environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call