Abstract

Accurate digital orthophoto map generation from high-resolution aerial images is important in various applications. Compared with the existing commercial software and the current state-of-the-art mosaicing systems, a novel fast georeferenced orthophoto mosaicing framework is proposed in this study. The framework can adapt to the challenging requirements of high-accuracy orthoimage generations with relatively fast speed, even if the overlap rate is low. We provide appearance and spatial correlation-constrained fast low-overlap neighbor candidate query and matching. On the basis of GPS information, we introduce an absolute position and rotation-averaging strategy for global pose initialization, which is essential for the high convergence and efficiency of nonconvex pose optimization of every image. We also propose a planar-restricted global pose graph optimization method. The optimization is extremely efficient and robust considering that point clouds are parameterized to planes. Finally, we apply a matching graph-based exposure compensation and region reduction algorithm for large-scale and high-resolution image fusion with high efficiency and novel precision. Experimental results demonstrate that our method can achieve the state-of-the-art performance while maintaining high precision and robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call