Abstract
We describe methods for fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions (BJJs). We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schr\"odinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. The best scaling of the squeezing parameter for large number of atoms N is \xi^2_S ~ 1/N.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.