Abstract

Digitally reconstructed radiographs (DRR) are a simulation of radiographic images produced through a perspective projection of the three-dimensional (3D) image (volume) onto a two-dimensional (2D) image plane. The traditional method for the generation of DRRs, namely ray-casting, is a computationally intensive process and accounts for most of solution time in 3D/2D medical image registration frameworks, where a large number of DRRs is required. A few alternate methods for a faster DRR generation have been proposed, the most successful of which are based on the idea of pre-calculating the attenuation value of possible rays. Despite achieving good quality, these methods support a limited range of motion for the volume and entail long pre-calculation time. In this paper, we propose a new preprocessing procedure and data structure for the calculation of the ray attenuation values. This method supports all possible volume positions with practically small memory requirements in addition to reducing the complexity of the problem from O(n3) to O(n2). In our experiments, we generated DRRs of high quality in 63 milliseconds with a preprocessing time of 99.48 seconds and a memory size of 7.45 megabytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.