Abstract
Due to the large pixel pitch and limited size of spatial light modulator (SLM), the field of view (FOV) of current holographic display is greatly restricted. Cylindrical holography can effectively overcome the constraints of FOV. However, the existent algorithms of cylindrical hologram are all based on the wave-optics based approach. In this paper, to the best of our knowledge, we adopt the ray-optics based approach in the generation of cylindrical computer generated hologram (CCGH) for the first time. Information of parallax images captured from three-dimensional (3D) objects using a curved camera array is recorded into a cylindrical hologram. Two different recording specific algorithms are proposed, one is based on the Fast Fourier Transform (FFT) method, and another is based on the pinhole-type integral imaging (PII) method. The simulation results confirm that our proposed methods are able to realize a fast generation of the cylindrical photorealistic hologram.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.