Abstract
The generalized Lloyd algorithm (GLA) plays an important role in the design of vector quantizers (VQ) for lossy data compression, and in feature clustering for pattern recognition. In the VQ context, this algorithm provides a procedure to iteratively improve a codebook and results in a local minimum which minimizes the average distortion function. We present a set of ideas that provide the basis for the acceleration of the GLA, some of which are equivalent to the exhaustive nearest neighbor search and some that may trade-off performance for the execution speed. More specifically, we use the maximum distance initialization technique in conjunction with either the partial distortion method or the fast tree-structured nearest neighbor encoding or the candidate-based constrained nearest neighbor search. As it is shown by the numerical experiments, all these methods provide significant improvement of the execution time of the GLA, in most cases together with an improvement of its performance. This improvement is of the order of 0.4 dB in the MSE, 15% in the entropy and more than 100 times in the execution time for some of the results presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.