Abstract

We present the design and characterization of a fully-integrated array of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$16 \times 16$ </tex-math></inline-formula> Single-Photon Avalanche Diodes (SPADs) with fast-gating capabilities and 16 on-chip 6 ps time-to-digital converters, which has been embedded in a compact imaging module. Such sensor has been developed for Non-Line-Of-Sight imaging applications, which require: i) a narrow instrument response function, for a centimeteraccurate single-shot precision; ii) fast-gated SPADs, for time-filtering of directly reflected photons; iii) high photon detection probability, for acquiring faint signals undergoing multiple scattering events. Thanks to a novel multiple differential SPAD-SPAD sensing approach, SPAD detectors can be swiftly activated in less than 500 ps and the full-width at half maximum of the instrument response function is always less than 75 ps (60 ps on average). Temporal responses are consistently uniform throughout the gate window, showing just few picoseconds of time dispersion when 30 ns gate pulses are applied, while the differential non-linearity is as low as 250 fs. With a photon detection probability peak of 70% at 490 nm, a fill-factor of 9.6% and up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.6 \cdot 10^{8}$ </tex-math></inline-formula> photon time-tagging measurements per second, such sensor fulfills the demand for fully-integrated imaging solutions optimized for non-line-of-sight imaging applications, enabling to cut exposure times while also optimizing size, weight, power and cost, thus paving the way for further scaled architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call