Abstract

Single-molecule localization methods play a vital role in a localization-based super-resolution fluorescence microscopy. However, it is difficult for conventional localization schemes based on the Gaussian fitting to locate overlapped high-density fluorescent emitters. Currently, in the spatial domain, the compressive-sensing-based algorithm (CSSTORM) can localize high-emitter-density images. However, the computational cost of this approach is extremely high, which limits its practical application. Here, we propose an alternative frequency-domain compressed sensing (FD-CS) technique for fast super-resolution imaging. Unlike the CSSTORM method, which is a measurement matrix based on the point spread function, a Fourier dictionary designed in the frequency domain and orthogonal matching pursuit is used to reliably recover the original signal. The simulation and experimental results prove that the FD-CS is 1000 times faster than CSSTORM with CVX and ten times faster than that with L1-Homotopy with almost the same localization accuracy and recall rate. This drastic reduction in computational time should allow the compressed sensing approach to be routinely applied to a super-resolution image analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.