Abstract

Wind-induced response analysis is an important process in the design of large-span roofs. Conventional time-domain methods are computationally more expensive than frequency-domain algorithms; however, the latter are not as accurate because of the ill-treatment of the modal coupling effects. This paper revisited the derivations of the frequency-domain algorithm and proposed a fast algorithm for estimating the dynamic wind-induced response considering duly the modal coupling effects. With the wind load cross-spectra modeled by rational functions, closed-form solutions to the frequency-domain integrals can be calculated by Cauchy’s residue theorem, rather than by numerical integration, thereby reducing the truncation errors and enhancing the efficiency of computation. The algorithm is applied to the analysis of a grandstand roof and a spherical dome. Through comparison with time domain analyses results, the algorithm is proved to be reliable. A criterion of the coupling modal combination was suggested based on the cumulative modal contribution rate of over 70%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call