Abstract

We propose a new fast algorithm for solving one of the standard formulations of frame-based image deconvolution: an unconstrained optimization problem, involving an $\ell_2$ data-fidelity term and a non-smooth regularizer. Our approach is based on using variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The resulting algorithm efficiently uses a regularized version of the Hessian of the data fidelity term, thus exploits second order information. Experiments on a set of image deblurring benchmark problems show that our algorithm is clearly faster than previous state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call