Abstract
This paper presents an algorithm based on Fractal theory by using Iterated Function Systems (IFS). An efficient and fast coding mechanism is proposed by exploiting the self similarity nature in the Brain MRI images. The proposed algorithm utilizes Deep Reinforcement Learning (DRL) technique to learn the transformations required to recreate the original image. We avail of the Adaptive Iterated Function System (AIFS) as the encoding scheme. The proposed algorithm is trained and customized to compress the Medical images, especially Magnetic Resonance Imaging (MRI). The algorithm is tested and evaluated by using the original MR head scan test images. It learns from an existing biomedical dataset viz The Internet Brain Segmentation Repository (IBSR) to predict the new local affine transformations. The empirical analysis shows that the proposed algorithm is at least 4 times faster than the competitive methods and the decoding quality is far distinct with a reduction in the bit rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Computer Science and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.