Abstract

In this paper, the fast Fourier transform on multipole (FFTM) algorithm is used to accelerate the matrix-vector product in the boundary element method (BEM) for solving Laplace equation. This is implemented in both the direct and indirect formulations of the BEM. A new formulation for handling the double layer kernel using the direct formulation is presented, and this is shown to be related to the method given by Yoshida (Application of fast multipole method to boundary integral equation method, Kyoto University, Japan, 2001). The FFTM algorithm shows different computational performances in direct and indirect formulations. The direct formulation tends to take more computational time due to the evaluation of an extra integral. The error of FFTM in the direct formulation is smaller than that in the indirect formulation because the direct formulation has the advantage of avoiding the calculations of the free term and the strongly singular integral explicitly. The multipole and local translations introduce approximation errors, but these are not significant compared with the discretization error in the direct or indirect BEM formulation. Several numerical examples are presented to compare the computational efficiency of the FFTM algorithm used with the direct and indirect BEM formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.