Abstract

Robust stimulated Raman exact passages are requisite for controlling nonlinear quantum systems, with the wide applications ranging from ultracold molecules, non-linear optics to superchemistry. Inspired by shortcuts to adiabaticity, we propose the fast-forward scaling of stimulated Raman adiabatic processes with the nonlinearity involved, describing the transfer from an atomic Bose-Einstein condensate to a molecular one by controllable external fields. The fidelity and robustness of atom-molecule conversion are shown to surpass those of conventional adiabatic passages, assisted by fast-forward driving field. Finally, our results are extended to the fractional stimulated Raman adiabatic processes for the coherent superposition of atomic and molecular states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call