Abstract
A botnet, a set of compromised machines controlled distantly by an attacker, is the basis of numerous security threats around the world. Command and Control servers are the backbones of botnet communications, where the bots and botmasters send report and attack orders to each other. Botnets are also categorized according to their C&C protocols. A Domain Name System method known as Fast-Flux Service Network (FFSN) — a special type of botnet — has been engaged by bot herders to cover malicious botnet activities and increase the lifetime of malicious servers by quickly changing the IP addresses of the domain name over time. Although several methods have been suggested for detecting FFSNs, they have low detection accuracy especially with zero-day domain. In this research, we propose a new system called Fast Flux Killer System (FFKS) that has the ability to detect FF-Domains in online mode with an implementation constructed on Adaptive Dynamic evolving Spiking Neural Network (ADeSNN). The proposed system proved its ability to detect FF domains in online mode with high detection accuracy (98.77%) compare with other algorithms, with low false positive and negative rates respectively. It is also proved a high level of performance. Additionally, the proposed adaptation of the algorithm enhanced and helped in the parameters customization process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.