Abstract

High-level synthesis from OpenCL has shown significant potential, but current approaches conflict with mainstream OpenCL design methodologies owing to orders-of-magnitude longer field-programmable gate array compilation times and limited support for changing or adding kernels after system compilation. In this article, the authors introduce a back-end synthesis approach for potentially any OpenCL tool. This approach uses virtual coarse-grained reconfiguration contexts to speed up compilation by 4,211× at a cost of 1.8× system resource overhead, while also enabling 144× faster reconfiguration to support different kernels and rapid changes to kernels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.