Abstract

Fine initial alignment is vital to the Inertial Navigation System (INS) before the launching of a missile. The existing initial alignment methods are mainly performed on a stationary base after the missile has been erected to the vertical state. However, these methods consume extra alignment time and some state variables have poor degrees of observability, thus losing the rapidity of alignment. In order to solve the problem, a fast fine initial self-alignment method of a missile-borne INS is proposed, which is performed during the erecting process on a stationary base. The convected Euler angle error is modelled to optimise the erecting manoeuvre which can prevent large Euler angle errors and improve the system observability. The fine initial alignment model is established to estimate and correct the initial misalignment. Several experiments verify that the proposed method is effective for improving the rapidity of the fine initial alignment for a missile-borne INS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.