Abstract

The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data.

Highlights

  • The metabolome reflects the current biological state of an organism and is the endpoint of all interactions between environment, genome, transcriptome and proteome

  • Depending on the aim of a metabolomics study different extraction protocols can be needed and an optimal sampling method should be compatible with a wide range of extraction protocols

  • Our results suggest that a 1 mL washing volume provides sufficient clean-up for subsequent metabolite profiling analysis

Read more

Summary

Introduction

The metabolome reflects the current biological state of an organism and is the endpoint of all interactions between environment, genome, transcriptome and proteome. The metabolome and its response to different conditions deliver valuable mechanistic insights into as diverse topics as nutrition, diseases, biomarkers, toxicity, crop traits, aging, and stress among others. The specific roles of these authors are articulated in the ‘author contributions’ section

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call