Abstract

This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering performance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.