Abstract

A fast fabric phase sorptive extraction method is presented herein for the rapid isolation of selected beta-blocker drugs from human serum and urine. Among many high efficiency sol-gel sorbent coated FPSE membranes, sol-gel CW20 M coated FPSE membrane was identified as the best FPSE membrane for the target beta-blocker drugs possessing logP values ranging from 0.1 (highly polar) to 3.1 (moderately polar). Due to the engineered affinity towards the analytes via complementary intermolecular interactions and high mass transfer rate of the analytes from the bulk sample solution to the FPSE membrane, the extraction is accomplished in relatively short time (15 min) while its high permeability permits the direct extraction of biological samples without any other pretreatment. The advantages of the fabricated extraction membrane were exploited for the determination of six beta-blockers (namely atenolol, nadolol, metoprolol, oxprenolol, labetalol and propranolol) in biological matrices in combination with UHPLC-ESI-MS/MS. Important parameters including extraction time, sample volume, sorbent size, elution solvent, etc. affecting the performance of the extraction were systematically investigated. The linearity of the method was evaluated in the range of 50–5000 ng mL−1 by constructing weighted (1/X) matrix-matched calibration curves. The intra-day and inter-day trueness were ranged between – 17.2 to 13.3% and – 10.8 to 12.6%, respectively. The intra-day and inter-day precision were less than 11.5 and 14.5 %, respectively. The proposed analytical scheme was successfully applied to the determination of the target drugs in human serum and urine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.