Abstract

AbstractPrevious studies suggest that the metamorphic evolution of the ultrahigh‐pressure garnet peridotite from Alpe Arami was characterized by rapid subduction to a depth of c. 180 km with partial chemical equilibration at c. 5.9 Gpa/1180 °C and an initial stage of near‐isothermal decompression followed by enhanced cooling. In this study, average cooling rates were constrained by diffusion modelling on retrograde Fe–Mg zonation profiles across garnet porphyroclasts. Considering the effects of temperature, pressure and garnet bulk composition on the Fe–Mg interdiffusion coefficient, cooling rates of 380–1600 °C Myr−1 for the interval from 1180 to 800 °C were obtained. Similar or even higher average cooling rates resulted from thermal modelling, whereby the characteristics of the calculated temperature‐time path depend on the shape and size of the hot peridotite body and the boundary conditions of the cooling process. The very high cooling rates obtained from both geospeedometry and thermal modelling imply extremely fast exhumation rates of c. 15 mm yr−1 or more. These results agree with the range of exhumation rates (16–50 mm yr−1) deduced from geochronological results. It is suggested that the Alpe Arami peridotite passively returned towards the surface as part of a buoyant sliver, caused as a consequence of slab breakoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.