Abstract

Exciton spin relaxation is investigated in single epitaxially grown semiconductor quantum dots in order to test the expected spin relaxation quenching in this system. We study the polarization anisotropy of the photoluminescence signal emitted by isolated quantum dots under steady-state or pulsed non-resonant excitation. We find that the longitudinal exciton spin relaxation time is strikingly short ($\leq$100 ps) even at low temperature. This result breaks down the picture of a frozen exciton spin in quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.