Abstract
Addition theorems for vector spherical harmonics require the determination of the Gaunt coefficients that appear in a linearization expansion of the product of two associated Legendre functions. This paper presents an algorithm for the efficient calculation of these coefficients through solving the most appropriate (lower triangular) linear system and derives all relevant recurrence relations needed in the calculation. This algorithm is also applicable to the calculation of the Clebsch-Gordan coefficients that are closely related to the Gaunt coefficients and are frequently encountered in the quantum theory of angular momentum. The new method described in this paper reduces the computing time to ∼ 1%, compared to the existing formulation that is widely used. This new method can be applied to the calculation of both low- and high-degree coefficients, while the existing formulation works well only for low degrees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.