Abstract
We describe a new technique for evaluating polynomials over binary finite fields. This is useful in the context of anti-DPA countermeasures when an S-box is expressed as a polynomial over a binary finite field. For $$n$$ -bit S-boxes, our new technique has heuristic complexity $${\fancyscript{O}}(2^{n/2}/\sqrt{n})$$ instead of $${\fancyscript{O}}(2^{n/2})$$ proven complexity for the Parity-Split method. We also prove a lower bound of $${{\varOmega }}(2^{n/2}/\sqrt{n})$$ on the complexity of any method to evaluate $$n$$ -bit S-boxes; this shows that our method is asymptotically optimal. Here, complexity refers to the number of non-linear multiplications required to evaluate the polynomial corresponding to an S-box. In practice, we can evaluate any 8-bit S-box in 10 non-linear multiplications instead of 16 in the Roy–Vivek paper from CHES 2013, and the DES S-boxes in 4 non-linear multiplications instead of 7. We also evaluate any 4-bit S-box in 2 non-linear multiplications instead of 3. Hence our method achieves optimal complexity for the PRESENT S-box.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.