Abstract

Maximum likelihood (ML) and restricted maximum likelihood (REML) are nowadays very popular in geophysics, geodesy and many other fields. There is also a growing number of investigations into how to calculate covariance parameters by ML/REML accurately and fast, and assure the convergence of the iteration steps in derivative-based approaches. The latter condition is not satisfied in many solutions, as it requires composed procedures or takes an unacceptable amount of time. The article implements efficient Fisher scoring (FS) to covariance parameter estimation in least-squares collocation (LSC). FS is optimized through Levenberg–Marquardt (LM) optimization, which provides stability in convergence when estimating two covariance parameters necessary for LSC. The motivation for this work was a very large number of non-optimized FS in the literature, as well as a deficiency of its scientific and engineering applications. The example work adds some usefulness to maximum likelihood estimation (ML) and FS and shows a new application—an alternative approach to LSC—a parametrization with no empirical covariance estimation. The results of LM damping applied to FS (FSLM) require some additional research related with optimal LM parameter. However, the method appears to be a milestone in relation to non-optimized FS, in terms of convergence. The FS with LM provides a reliable convergence, whose speed can be adjusted by manipulating the LM parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.