Abstract

The Golden code is a full-rate full-diversity space-time code which has been incorporated in the IEEE 802.16 (WiMAX) standard. The worst case complexity of a tree-based sphere decoder for a square QAM constellation is O(N3), where N is the size of the underlying QAM constellation; the worst case will dominate average decoding complexity on any channel with a significant line of sight component. In this paper, we present a simple algorithm with quadratic complexity for decoding the Golden code that can be employed by mobile terminals with either one or two receive antennas, that is resilient to near singularity of the channel matrix, and that gives essentially maximum likelihood (ML) performance. Dual use is an advantage, since there will likely be some IEEE 802.16 mobile terminals with one receive antenna and some with two antennas. The key to the quadratic algorithm is a maximization of the likelihood function with respect to one of the pair of signal points conditioned on the other. This choice is made by comparing the determinants of two covariance matrices, and the underlying geometry of the Golden code guarantees that one of these choices is good with high probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.