Abstract

We present an algorithm which speeds scalar multiplication on a general elliptic curve by an estimated 3.8% to 8.5% over the best known general methods when using affine coordinates. This is achieved by eliminating a field multiplication when we compute 2P +Q from given points P, Q on the curve. We give applications to simultaneous multiple scalar multiplication and to the Elliptic Curve Method of factorization. We show how this improvement together with another idea can speed the computation of the Weil and Tate pairings by up to 7.8%.KeywordsElliptic curve cryptosystemelliptic curve arithmeticscalar multiplicationECMpairing-based cryptosystem

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.