Abstract
Nanocrystalline diamond (NCD) films are attractive for many applications due to their smooth surfaces while holding the properties of diamond. However, their growth rate is generally low using common Ar/CH4 with or without H2 chemistry and strongly dependent on the overall growth conditions using microwave plasma chemical vapor deposition (MPCVD). In this work, incorporating a small amount of N2 and O2 additives into CH4/H2 chemistry offered a much higher growth rate of NCD films, which is promising for some applications. Several novel series of experiments were designed and conducted to tailor the growth features of NCD films by fine-tuning of the gas-phase compositions with different amounts of nitrogen and oxygen addition into CH4/H2 gas mixtures. The influence of growth parameters, such as the absolute amount and their relative ratios of O2 and N2 additives; substrate temperature, which was adjusted by two ways and inferred by simulation; and microwave power on NCD formation, was investigated. Short and long deposition runs were carried out to study surface structural evolution with time under identical growth conditions. The morphology, crystalline and optical quality, orientation, and texture of the NCD samples were characterized and analyzed. A variety of NCD films of high average growth rates ranging from 2.1 μm/h up to 6.7 μm/h were successfully achieved by slightly adjusting the O2/CH4 amounts from 6.25% to 18.75%, while that of N2 was kept constant. The results clearly show that the beneficial use of fine-tuning of gas-phase compositions offers a simple and effective way to tailor the growth characteristics and physical properties of NCD films for optimizing the growth conditions to envisage some specific applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.