Abstract
To extract information about the neutrino properties from the study of neutrinoless double-beta (0\nu\beta\beta) decay one needs a precise computation of the nuclear matrix elements (NMEs) associated with this process. Approaches based on the Shell Model (ShM) are among the nuclear structure methods used for their computation. ShM better incorporates the nucleon correlations, but have to face the problem of the large model spaces and computational resources. The goal is to develop a new, fast algorithm and the associated computing code for efficient calculation of the two-body matrix elements (TBMEs) of the 0\nu\beta{\beta} decay transition operator, which are necessary to calculate the NMEs. This would allow us to extend the ShM calculations for double-beta decays to larger model spaces, of about 9-10 major harmonic oscillator shells. The improvement of our code consists in a faster calculation of the radial matrix elements. Their computation normally requires the numerical evaluation of two-dimensional integrals: one over the coordinate space and the other over the momentum space. By rearranging the expressions of the radial matrix elements, the integration over the coordinate space can be performed analytically, thus the computation reduces to sum up a small number of integrals over momentum. Our results for the NMEs are in a good agreement with similar results from literature, while we find a significant reduction of the computation time for TBMEs, by a factor of about 30, as compared with our previous code that uses two-dimensional integrals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.