Abstract

We experimentally investigate the complex dynamics of a multi-mode quantum-dot semiconductor laser with time-delayed optical feedback. We examine a two-dimensional bifurcation diagram of the quantum-dot laser as a comprehensive dynamical map by changing the injection current and feedback strength. We found that the bifurcation diagram contains two different parameter regions of low-frequency fluctuations. The power-dropout dynamics of the low-frequency fluctuations are observed in the sub-GHz region, which is considerably faster than the conventional low-frequency fluctuations in the MHz region. Comparing the dynamics of quantum-dot laser with those of single- and multi-mode quantum-well semiconductor lasers reveals that the fast low-frequency fluctuation dynamics are unique characteristics of quantum-dot lasers with time-delayed optical feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.