Abstract

Abstract. A key component of domain decomposition solvers for hp discretizations of elliptic equations is the solver for internal stiffness matrices of p-elements. We consider an algorithm which belongs to the family of secondary domain decomposition solvers, based on the finite-difference like preconditioning of p-elements, and was outlined by the author earlier. We remove the uncertainty in the choice of the coarse (decomposition) grid solver and suggest the new interface Schur complement preconditioner. The latter essentially uses the boundary norm for discrete harmonic functions induced by orthotropic discretizations on slim rectangles, which was derived recently. We prove that the algorithm has linear arithmetical complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.