Abstract

This paper proposes a fast direction of arrival (DOA) estimation method based on positive incremental modified Cholesky decomposition atomic norm minimization (PI-CANM) for augmented coprime array sensors. The approach incorporates coprime sampling on the augmented array to generate a non-uniform, discontinuous virtual array. It then utilizes interpolation to convert this into a uniform, continuous virtual array. Based on this, the problem of DOA estimation is equivalently formulated as a gridless optimization problem, which is solved via atomic norm minimization to reconstruct a Hermitian Toeplitz covariance matrix. Furthermore, by positive incremental modified Cholesky decomposition, the covariance matrix is transformed from positive semi-definite to positive definite, which simplifies the constraint of optimization problem and reduces the complexity of the solution. Finally, the Multiple Signal Classification method is utilized to carry out statistical signal processing on the reconstructed covariance matrix, yielding initial DOA angle estimates. Experimental outcomes highlight that the PI-CANM algorithm surpasses other algorithms in estimation accuracy, demonstrating stability in difficult circumstances such as low signal-to-noise ratios and limited snapshots. Additionally, it boasts an impressive computational speed. This method enhances both the accuracy and computational efficiency of DOA estimation, showing potential for broad applicability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call