Abstract

Motivated by the increasing need to understand the algorithmic foundations of distributed large-scale graph computations, we study a number of fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n gg k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main result is an (almost) optimal distributed randomized algorithm for graph connectivity. Our algorithm runs in ~O(n/k2) rounds (~O notation hides a polylog(n) factor and an additive polylog(n) term). This improves over the best previously known bound of ~O(n/k) [Klauck et al., SODA 2015], and is optimal (up to a polylogarithmic factor) in view of an existing lower bound of ~Ω(n/k2). Our improved algorithm uses a bunch of techniques, including linear graph sketching, that prove useful in the design of efficient distributed graph algorithms. We then present fast randomized algorithms for computing minimum spanning trees, (approximate) min-cuts, and for many graph verification problems. All these algorithms take ~O(n/k2) rounds, and are optimal up to polylogarithmic factors. We also show an almost matching lower bound of ~Ω(n/k2) for many graph verification problems using lower bounds in random-partition communication complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.