Abstract

Exciton decay dynamics in chemically treated PbS quantum-dot (QD) films have been studied using femtosecond transient-absorption (TA) spectroscopy. In photoconductive QD films, a decay component with a lifetime of a few nanoseconds appeared in the TA signals because of exciton dissociation under weak excitation. Increasing excitation fluence resulted in additional fast-decay components corresponding to the lifetimes of multiple excitons, which decreased with increasing photoconductivity of the closely packed QD films. Auger recombination in photoexcited QDs was suppressed in highly photoconductive films. Our findings clearly show that the carrier transfer between the QDs dominates the lifetimes of single and multiple excitons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call