Abstract

Root cause analysis in a large-scale production environment is challenging due to the complexity of the services running across global data centers. Due to the distributed nature of a large-scale system, the various hardware, software, and tooling logs are often maintained separately, making it difficult to review the logs jointly for understanding production issues. Another challenge in reviewing the logs for identifying issues is the scale - there could easily be millions of entities, each described by hundreds of features. In this paper we present a fast dimensional analysis framework that automates the root cause analysis on structured logs with improved scalability. We first explore item-sets, i.e. combinations of feature values, that could identify groups of samples with sufficient support for the target failures using the Apriori algorithm and a subsequent improvement, FP-Growth. These algorithms were designed for frequent item-set mining and association rule learning over transactional databases. After applying them on structured logs, we select the item-sets that are most unique to the target failures based on lift. We propose pre-processing steps with the use of a large-scale real-time database and post-processing techniques and parallelism to further speed up the analysis and improve interpretability, and demonstrate that such optimization is necessary for handling large-scale production datasets. We have successfully rolled out this approach for root cause investigation purposes within Facebook's infrastructure. We also present the setup and results from multiple production use cases in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.