Abstract

Root cause analysis in a large-scale production environment is challenging due to the complexity and scale of the services running across global data centers. It is often difficult to review the logs jointly for understanding production issues given the distributed nature of the system. Additionally, there could easily be millions of entities, each described by hundreds of features. In this paper we present a fast dimensional analysis framework that automates the root cause analysis on structured logs with improved scalability. We first explore item-sets, i.e. combinations of feature values, that could identify groups of samples with sufficient support for the target failures using the Apriori algorithm and a subsequent improvement, FP-Growth. These algorithms were designed for frequent item-set mining and association rule learning over transactional databases. After applying them on structured logs, we select the item-sets that are most unique to the target failures based on lift. We propose pre-processing steps with the use of a large-scale real-time database and post-processing techniques and parallelism to further speed up the analysis and improve interpretability, and demonstrate that such optimization is necessary for handling largescale production datasets. We have successfully rolled out this approach for root cause investigation purposes within Facebook's infrastructure. We also present the setup and results from multiple production use cases in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call