Abstract

Multiphoton-excited fluorescence recovery while photobleaching (FRWP) is demonstrated as a method for quantitative measurements of rapid molecular diffusion over microsecond to millisecond timescales. Diffusion measurements are crucial in assessing molecular mobility in cell biology, materials science, and pharmacology. Optical and fluorescence microscopy techniques enable non-invasive rapid analysis of molecular diffusion but can be challenging for systems with diffusion coefficients exceeding ∼100 μm2/s. As an example, fluorescence recovery after photobleaching (FRAP) operates on the implicit assumption of a comparatively fast photobleaching step prior to a relatively slow recovery and is not generally applicable for systems exhibiting substantial recovery during photobleaching. These challenges are exacerbated in multiphoton excitation by the lower excitation efficiency and competing effects from local heating. Herein, beam-scanning FRWP with patterned line-bleach illumination is introduced as a technique that addresses FRAP limitations and further extends its application range by measuring faster diffusion events. In FRWP, the recovery of fluorescence is continuously probed after each pass of a fast-scanning mirror, and the upper bound of measurable diffusion rates is, therefore, only limited by the mirror scanning frequency. A theoretical model describing transient fluctuations in fluorescence intensity arising as a result of combined contributions from photobleaching and localized photothermal effect is introduced along with a mathematical framework for quantifying fluorescence intensity temporal curves and recovering room-temperature diffusion coefficients. FRWP is then tested by characterization of normal diffusion of rhodamine-labeled bovine serum albumin, green fluorescence protein, and immunoglobulin G molecules in aqueous solutions of varying viscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call