Abstract

Kernel methods are used frequently in various applications of machine learning. For large-scale high dimensional applications, the success of kernel methods hinges on the ability to operate certain large dense kernel matrix $K$. An enormous amount of literature has been devoted to the study of symmetric positive semidefinite (SPSD) kernels, where Nyström methods compute a low-rank approximation to the kernel matrix via choosing landmark points. In this paper, we study the Nyström method for approximating both symmetric indefinite kernel matrices as well SPSD ones. We first develop a theoretical framework for general symmetric kernel matrices, which provides a theoretical guidance for the selection of landmark points. We then leverage discrepancy theory to propose the anchor net method for computing accurate Nyström approximations with optimal complexity. The anchor net method operates entirely on the dataset without requiring the access to $K$ or its matrix-vector product. Results on various types of kernels (both indefinite and SPSD ones) and machine learning datasets demonstrate that the new method achieves better accuracy and stability with lower computational cost compared to the state-of-the-art Nyström methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.