Abstract

SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call