Abstract

Fast detection of heavy metals is important to ensure the quality and safety of herbal medicines. In this study, laser-induced breakdown spectroscopy (LIBS) was applied to detect the heavy metal content (Cd, Cu, and Pb) in Fritillaria thunbergii. Quantitative prediction models were established using a back-propagation neural network (BPNN) optimized using the particle swarm optimization (PSO) algorithm and sparrow search algorithm (SSA), called PSO-BP and SSA-BP, respectively. The results revealed that the BPNN models optimized by PSO and SSA had better accuracy than the BPNN model without optimization. The performance evaluation metrics of the PSO-BP and SSA-BP models were similar. However, the SSA-BP model had two advantages: it was faster and had higher prediction accuracy at low concentrations. For the three heavy metals Cd, Cu and Pb, the prediction correlation coefficient (Rp2) values for the SSA-BP model were 0.972, 0.991 and 0.956; the prediction root mean square error (RMSEP) values were 5.553, 7.810 and 12.906 mg/kg; and the prediction relative percent deviation (RPD) values were 6.04, 10.34 and 4.94, respectively. Therefore, LIBS could be considered a constructive tool for the quantification of Cd, Cu and Pb contents in Fritillaria thunbergii.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call