Abstract

A wide range of applications from multiple sectors already use ultra-wideband (UWB) technology to locate and track assets precisely. This is not the case, however, for first responder localization during emergency response (ER) operations, which are highly conditioned by procedural and environmental constraints. After analyzing these limitations and reviewing the current state-of-the-art solutions, this work presents a UWB-based indoor positioning system (IPS) that relies on the global navigation satellite system real-time kinematic (GNSS-RTK) technology to quickly, accurately, and safely deploy its required infrastructure on site. A set of tests conducted on a two-story building prove the suitability of such a system, providing an average accuracy of less than 1 meter for static targets and the ability to faithfully reproduce the path followed by a mobile target inside the building. The obtained results strengthen the presented approach and pave the way for more sophisticated UWB-based IPSs that would include unmanned aerial vehicles (UAVs) and/or mobile robots to speed up network deployment even more while offering additional ER services.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call