Abstract

This article describes a fast and automatic reconstruction of the edge plasma electron density from the radiation of energetic Li atoms of the diagnostic beam on the COMPASS tokamak. Radiation is detected by using a CCD camera and by using an avalanche photo-diode system with a temporal resolution of 20 ms and 2 μs, respectively. Both systems are equipped with a 670.8 nm optical filter which corresponds to the lithium 1s22s1-1s22p1 transition. A theoretical model and a data processing procedure of a raw signal to obtain the density profile are described. The reconstruction algorithm provides the absolutely calibrated electron density profiles together with the measurement error estimated from relatively calibrated light profiles; the implementation is performed in Python. Time demanding operations of the code were optimized to provide reconstruction of a single profile within less than 10 ms which makes the code applicable for processing of a large amount of data. Thanks to this calculation speed, it is possible to reconstruct electron density profiles between two consecutive shots on the COMPASS tokamak with 2 μs time resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.